CCR1, an enzyme required for lignin biosynthesis in Arabidopsis, mediates cell proliferation exit for leaf development

Jingshi Xue, Dexian Luo†, Deyang Xu‡, Minhuan Zeng, Xiaofeng Cui, Laigeng Li and Hai Huang*

National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China

Received 19 May 2015; accepted 3 June 2015.
*For correspondence (e-mail hhuang@sibs.ac.cn).
†Present address: Biology Department, University of Massachusetts, Amherst, MA 01003, USA.
‡Present address: Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871, Frederiksberg C, Denmark.

SUMMARY

After initiation, leaves first undergo rapid cell proliferation. During subsequent development, leaf cells gradually exit the proliferation phase and enter the expansion stage, following a basipetally ordered pattern starting at the leaf tip. The molecular mechanism directing this pattern of leaf development is as yet poorly understood. By genetic screening and characterization of Arabidopsis mutants defective in exit from cell proliferation, we show that the product of the CINNAMOYL CoA REDUCTASE (CCR1) gene, which is required for lignin biosynthesis, participates in the process of cell proliferation exit in leaves. CCR1 is expressed basipetally in the leaf, and ccr1 mutants exhibited multiple abnormalities, including increased cell proliferation. The ccr1 phenotypes are not due to the reduced lignin content, but instead are due to the dramatically increased level of ferulic acid (FeA), an intermediate in lignin biosynthesis. FeA is known to have antioxidant activity, and the levels of reactive oxygen species (ROS) in ccr1 were markedly reduced. We also characterized another double mutant in CAFFEIC ACID O-METHYLTRANSFERASE (comt) and CAFFEOYL CoA 3-O-METHYLTRANSFERASE (ccoaomt), in which the FeA level was dramatically reduced. Cell proliferation in comt ccoaomt leaves was decreased, accompanied by elevated ROS levels, and the mutant phenotypes were partially rescued by treatment with FeA or another antioxidant (N-acetyl-L-cysteine). Taken together, our results suggest that CCR1, FeA and ROS coordinate cell proliferation exit in normal leaf development.

Keywords: antioxidant activity, Arabidopsis, cinnamoyl CoA reductase 1, cell proliferation exit, ferulic acid, reactive oxygen species.

INTRODUCTION

The leaf is the major photosynthetic organ of most vascular plants. Leaf development in dicotyledons is usually thought to have three developmental phases: the proliferation phase, the expansion phase and the maturation phase (Beemster et al., 2005). These three phases are not restricted spatially to specific or temporally to a precise developmental phase (Granier and Tardieu, 2009), but instead coexist showing a tip-to-base gradient, matching the leaf greening pattern (Donnelly et al., 1999; Efroni et al., 2010; Andriankaja et al., 2012). Zones at the leaf tip shift earlier from one phase to another than those at the base (Poethig and Sussex, 1985). During the leaf expansion phase, cell division slows down and eventually stops, and cell expansion proceeds at a maximal rate to increase the individual cell area (Pyke and Leech, 1991; Donnelly et al., 1999). Finally, in the maturation phase, tissue expansion slows down and ceases.

Studies exploring the molecular mechanism in phase changes in leaf development have made some important progress in recent years. KLUH (KLU), one of the many factors that promote cell proliferation in leaves, positively regulates a mobile growth factor, designated MGF, such that MGF is activated in the KLU expression domain and then diffuses homogenously throughout the leaf. Because of the restricted KLU expression domain after leaf growth, the reduced MGF levels cause the leaf cells to exit from the proliferation phase (Anastasiou et al., 2007; Kazama et al., 2010). Recent studies also found that repression of chloro-
plast development in leaves may result in a delay in cell proliferation exit, indicating that a retrograde signal from chloroplasts exists that may be involved in exit from the cell proliferation phase (Andrianakaja et al., 2012). However, until now, the nature of this putative chloroplast-produced signal has been largely unknown.

In this study, we report that cinnamoyl CoA reductase 1 (CCR1) is a key factor involved in progressive exit from the cell proliferation phase. CCR1 catalyzes the NADPH-dependent reduction of cinnamoyl CoA esters to their corresponding cinnamaldehydes, an important step in the biosynthesis of lignin, which has important functions in defense and in cell proliferation (Boerjan et al., 2003). FeA also has antioxidant activity both in vitro and in cells (Graf, 1992; Kanski et al., 2002). We show that soluble FeA in leaf cells is closely negatively correlated with CCR1 expression. As photosynthetic electron transport generates high levels of reactive oxygen species (ROS) (Foyer and Shigeoka, 2011) and oxidative stress terminates cell proliferation (Burdon, 1995; Boonstra and Post, 2004; Guo et al., 2010; Tsukagoshi et al., 2010), we propose that CCR1 acts through depletion of FeA to coordinate with ROS to direct exit from the cell proliferation phase during leaf development.

RESULTS

The ccr1 mutation results in plants with increased cell proliferation

In the course of identifying factors that affect cell-cycle exit, we used ethyl methanesulfonate to mutagenize a previously characterized Arabidopsis mutant asymmetric leaves1/2 enhancer7 (ae7), which shows defective cell proliferation (Yuan et al., 2010; Luo et al., 2012). We then screened for suppressors with impaired ae7 phenotypes caused by a second mutation. ae7 has reduced numbers of cells in the leaf and root. In the Landsberg erecta (Ler) genetic background, leaves of ae7 are pale green with serrated margins (Figure S1) (Yuan et al., 2010; Luo et al., 2012). Line 89/ae7, a plant identified from the M2 progeny of the mutagenized ae7, showed compromised ae7 phenotype (Figure S1). This plant was backcrossed to wild-type Ler, and a homozygous mutant that did not contain ae7 was obtained from the segregating F2 population. This mutant, designated line 89, showed a relatively small plant size, increased numbers of cells, and normal green leaves.

To identify the putative new gene, we crossed line 89 with wild-type Columbia-0 (Col-0), and used PCR-based genetic markers to analyze approximately 4000 recombinant chromosomes in individuals in the F2 generation. The new gene locus was mapped to chromosome 1 between markers F7H2 and F3O9 (Figure S2). Sequencing of candidate genes in this region revealed that a previously characterized gene, CCR1, carried a C→T substitution in the third exon, resulting in an amino acid change from serine to phenylalanine (Figure S2). We then backcrossed line 89 with wild-type Col-0 another four times for further analysis. To confirm that the phenotypes of the back-crossed line 89 resulted from the ccr1 mutation, we performed an allelism test by crossing line 89 (Col-0) with a previously identified ccr1 mutant, ccr1-g (Col-0) (Derikvand et al., 2008), and also performed a functional complementation test by introducing the CCR1pro:CCR1-GUS construct into line 89 (Col-0). Both tests indicated that the phenotypes of line 89 (Col-0) were caused by the disrupted CCR1 gene (Figure S2). The newly obtained mutant was renamed ccr1-4.

Cells of ccr1-4 remain in the mitotic state longer than wild-type cells

Similar to previously reported ccr1 mutants, ccr1-4 showed a relatively small plant stature (Figure 1a) and leaf size (Figure 1b). Further characterization of the ccr1-4 phenotypes revealed that the palisade cells in the ccr1-4 leaves were smaller (Figure 1d), while the number of cells per leaf was significantly greater (Figure 1f) compared with wild-type plants (Figure 1c,f). These phenotypes were also observed in leaves of the ccr1-g mutant (Figure S3). Similarly, the number of cortex cells in the root meristematic zone was greater in ccr1-4 (Figure 1h,k,m) than in wild-type plants (Figure 1g,j,m). To understand whether the mutation affects the timing of cell differentiation, we performed a flow cytometric analysis to examine the nuclear ploidy of the ccr1-4 mutant. Although the number of cells in the first leaves that had a 2C DNA content only slightly increased in ccr1-4 compared with wild-type seedlings 9 days after germination, the decrease in the 2C cell ratio was much slower in ccr1-4 than in wild-type from day 9 onwards (Figure 1o,p). In wild-type leaves, the number of 4C cells peaked on day 11, followed by a decrease in the ratio (Figure 1o), whereas the ratio of this population in the ccr1-4 leaves reached its peak on day 23 (Figure 1p). The number of 8C cells in ccr1-4 leaves increased much more slowly than in the wild-type, and 16C cells were barely detected in ccr1-4 leaves during leaf development (Figure 1o,p).
Figure 1. The ccr1 mutation results in plants with increased cell number in leaves and roots.
(a) Plant sizes of 18-day-old wild-type Col-0 and ccr1-4 mutant seedlings. Scale bar = 1 cm.
(b) Leaf sizes of 18-day-old wild-type and ccr1-4 seedlings. Scale bar = 1 cm.
(c–e) Palisade cells of the first rosette leaves on day 25 from wild-type (c), ccr1-4 (d) and cad-c cad-d (e) plants. Scale bar = 50 μm.
(f) Quantitative analysis of palisade cells. Cell numbers were increased in ccr1-4 but not in cad-c cad-d leaves. The first leaves on day 25 were analyzed, and the value for cell number from wild-type Col-0 was arbitrarily fixed at 1.0.
(g–l) Laser scanning confocal microscopy to analyze the cell number in the cortex of roots of 7-day-old wild-type Col-0 (g, j), ccr1-4 (h, k) and cad-c cad-d (i, l) seedlings. Scale bar = 100 μm (g); (h) and (i) are at the same magnification as (g), (j), (k) and (l) are magnifications of the boxed regions in (g), (h) and (i), respectively.
(m) The ccr1-4 mutant contained an increased number of cortex cells in the root meristematic zone, compared with wild-type and cad-c cad-d plants. Roots of 7-day-old seedlings were scored, and the value for cell number from wild-type Col-0 was arbitrarily fixed at 1.0.
(n) Stature of 30-day-old wild-type, ccr1-4 and cad-c cad-d plants. Scale bar = 1 cm.
(o, p) Flow cytometry analysis to determine the nuclear ploidy of the first leaves of wild-type (o) and ccr1-4 (p) at various times. Three biological replicates were performed and the results were consistent. The results shown are from one of the three experiments.

Values in (f) and (m) are means ± SD (n = 10). Asterisks indicate statistically significant differences compared with Col-0 (P < 0.01).

© 2015 The Authors
results indicate that the ccr1 mutation causes cells to retain their mitotic state for a prolonged time.

Cinnamyl alcohol dehydrogenase (CAD) is an NADPH-dependent reductase that converts cinnamaldehydes, the products of CCR1, into their corresponding alcohols (Luderitz and Grisebach, 1981). In Arabidopsis, two functionally redundant CAD members, CAD-C and CAD-D, catalyze this reaction. Like ccr1, the cad-c cad-d double mutant showed a decreased lignin content (Sibout, 2005). However, the double mutant plants showed normal growth (Figure 1n) and normal cell sizes in the leaf and root (Figure 1e,i,l). Also, the double mutant showed normal numbers of cells in the leaf and root cortex (Figure 1f,m), although the floral stem of cad-c cad-d was limp at maturity (Figure 1n). Thus, the ccr1 and cad-c cad-d mutants showed similarly decreased lignin contents (Thevenin et al., 2010), but only ccr1 showed prominent developmental defects. Therefore, the ccr1-4 phenotypes are probably caused by factors other than the decreased lignin content.

CCR1 expression is developmentally regulated in leaves

To understand how CCR1 affects cell proliferation, we analyzed the expression pattern of CCR1 during leaf development. Because introduction of CCR1pro:CCR1-GUS into ccr1-4 fully rescued the ccr1-4 phenotypes (Figure S2), we examined GUS staining in the first leaf of CCR1pro:CCR1-GUS/ccr1-4 plants. A total of five independent transgenic lines were examined, and they showed consistent GUS staining patterns. GUS staining first appeared at the leaf tip of seedlings on day 7 (Figure 2a), and then extended to the more proximal portion by day 9 (Figure 2b). The third or younger leaves of seedlings on days 7 and 9 were barely stained (Figure 2a,b, arrowheads). GUS staining covered the entire first leaf from day 11 onwards.

![Figure 2](https://example.com/figure2.png)

Figure 2. CCR1 expression is developmentally regulated.

(a–d) CCR1 expression patterns in developing leaves. CCR1pro:CCR1-GUS was introduced into the ccr1-4 mutant, and the first rosette leaves of a fully rescued mutant plant were analyzed on days 7 (a), 9 (b), 11 (c) and 13 (d). The arrowheads in (a) and (b) indicate the third or fourth leaves, which were barely stained.

(e–h) CYCB1;1 expression patterns during leaf development in wild-type plants. GUS staining was analyzed in the first leaves of a CYCB1;1pro:Dbox-GUS/Col-0 line on days 7 (e), 9 (f), 11 (g) and 13 (h).

(i–l) CYCB1;1 expression patterns in ccr1-4 leaves. GUS staining was analyzed in the first leaves of a CYCB1;1pro:Dbox-GUS/ccr1-4 line on days 7 (i), 9 (j), 11 (k) and 13 (l). The ccr1 mutation resulted in leaves with a prolonged time for GUS signals to become detectable. Arrowheads in (e), (f), (i) and (j) indicate the third or fourth leaves. Staining for all leaf samples was performed under the same conditions. The punctate GUS signals represent trichomes that may be stained at certain developmental stages. Scale bars = 0.5 mm (a, e, i) and 1 mm (b–d, f–h, j–l).
but the FeA level decreased substantially on day 9 and leaves contained a considerable amount of soluble FeA, cell growth states and obtain information about relationships among FeA levels, type leaves at various stages of development by LC-MS, to To this end, we first analyzed the soluble FeA level in wild-

†-4 plants showed GUS staining (Figure S4). The third leaf or younger leaves of seedlings on days 7 and 9 were deeply stained (Figure 2e,f), and no GUS staining was detected in leaves from day 11 onwards (Figure 2g,h). These results indicate that CCR1 expression is coincident with exit from the cell cycle during leaf development.

We next analyzed CYCB1;1 promoter activity in ccr1-4 leaves using CYCB1;1prom:Dbox-GUS/ccr1-4 plants, which were obtained by introgressing the CYCB1;1prom:Dbox-GUS construct into the ccr1-4 mutant. On day 7, GUS staining was weak at the leaf tip of the first leaf of the wild-type (Figure 2e), but strong at the leaf tip of the first leaf of ccr1-4 (Figure 2f). On day 9, GUS staining was weak or absent from the most distal part of wild-type leaves (Figure 2f), but still relatively strong in the whole leaf of ccr1-4, except for the tip (Figure 2i). On days 11 and 13, GUS staining was hardly detected in wild-type leaves (Figure 2g,h), but was detectable in ccr1-4 leaves (Figure 2k,l). These results are consistent with the observation that the ccr1 mutation results in a prolonged duration of cell proliferation in leaves (Figure 1p).

To understand whether exit from the cell proliferation phase in other plant tissues is also correlated with CCR1 expression, we analyzed roots. In contrast to leaves, where dividing cells were usually not associated with CCR1 expression, CCR1 is expressed in dividing root cells, as root cells in the apical meristematic zone of CCR1prom:CCR1-GUS/ccr1-4 plants showed GUS staining (Figure S4). The vascular cylinder had the strongest GUS staining compared with the other parts of the root, whereas the root cap was barely stained (Figure S4). These results suggest that CCR1-mediated cell proliferation exit is tissue-specific.

The soluble FeA level decreases during leaf development

It has been reported that ccr1 mutants contain elevated levels of FeA (Derikvand et al., 2008; Vanholme et al., 2012). This prompted us to investigate whether the increased FeA level in the mutants is the reason for the alterations in cell proliferation and causes the other developmental defects. To this end, we first analyzed the soluble FeA level in wild-type leaves at various stages of development by LC-MS, to obtain information about relationships among FeA levels, cell growth states and CCR1 expression levels. On day 7, leaves contained a considerable amount of soluble FeA, but the FeA level decreased substantially on day 9 and became undetectable by day 11 onwards (Figure 3a). Thus, the decrease in FeA levels is correlated with the increased CCR1 expression levels, as shown in Figure 2, but negatively correlated with cell division.

As leaves on day 9 showed CCR1 expression strongly at the tip, mildly in the middle, and no expression at the proximal regions (Figure 2b), these leaves are suitable for further analysis of the correlation between CCR1 expression and FeA levels. We thus separated the distal from the proximal parts, removing the middle parts (Figure 3b, inset), and compared the FeA content in the separated distal and proximal parts. In wild-type plants, although the proximal part of the first leaves on day 9 contained soluble FeA, it was not detectable in the distal part (Figure 3b). However, in ccr1-4 plants, both proximal and distal parts contained substantially increased levels of soluble FeA (Figure 3b). We also analyzed soluble FeA levels in the root, where CCR1 is strongly expressed, but failed to detect

© 2015 The Authors
it (Figure S4). Because the increase in CCR1 expression levels is closely associated with the decrease in FeA levels, there is the possibility that the effect of CCR1 action on cell proliferation may occur via altered FeA levels in leaves.

The distribution pattern of ROS resembles the CCR1 expression pattern in leaves

Because FeA scavenge ROS in solution, in cultured neurons and in synaptosomal systems (Kanski et al., 2002), and oxidative stress terminates cell proliferation (Burdon, 1995; Boonstra and Post, 2004; Guo and Jambunathan, 2010), we then investigated whether the FeA level was negatively correlated with ROS levels during leaf development. Using the diaminobenzidine (DAB) staining technique, we analyzed the distribution pattern of hydrogen peroxide (H$_2$O$_2$), a type of ROS, in the first leaf of wild-type and ccr1-4 plants. In wild-type leaves, the pattern of DAB staining resembled that of CCR1 expression; it began at the distal part of the leaf on day 7 (Figure 4a), and extended to the middle portion of the leaf by day 9 (Figure 4b), and the entire leaf by day 11 onwards (Figure 4c, d). Compared with wild-type plants, ccr1-4 showed delayed H$_2$O$_2$ accumulation in the first leaf on day 7 (Figure 4e), and the staining in leaves on day 9 was associated only with trichomes (Figure 4f). Although leaves of ccr1-4 showed DAB staining on days 11 and 13 (Figure 4g,h), the staining was much weaker than that in leaves of wild-type plants at the same age.

This H$_2$O$_2$ accumulation pattern was further confirmed by staining with CM-H$_2$DCFDA [5-(and-6)-chloromethyl-2,7'-dichlorodi-hydrofluorescein diacetate, acetyl ester] (Jambunathan, 2010). For example, on day 9, there was strong DCF fluorescence at the distal region of the wild-type leaf (Figure 4i–l), but it was very weak in the similar region of the ccr1-4 leaf (Figure 4m–o). In proximal regions of same-age leaves, DCF fluorescence was barely detected in either wild-type or ccr1-4 seedlings (Figure 4p–s). As the ccr1-4 leaves contained increased levels of FeA and decreased levels of H$_2$O$_2$, and FeA antagonizes ROS, which at a high level are capable of blocking cell proliferation, it is possible that the high FeA level may be the reason for increased cell proliferation in ccr1 mutants.

Treatment of plants with FeA and H$_2$O$_2$ affects cell proliferation

To provide further evidence for the role of FeA, we treated Arabidopsis seedlings with H$_2$O$_2$ and FeA, and analyzed changes in their growth. Compared with leaves of mock-treated seedlings (Figure 5a), the leaves of seedlings treated with 0.5 and 1 mM H$_2$O$_2$ had fewer, but larger, palisade cells (Figure 5b,c,e,f). A further increase in H$_2$O$_2$ concentration to 5 mM not only caused more severe reductions in cell number (Figure 5e), but also decreased the cell size (Figure 5d,f).

Treatments with low concentrations of FeA (50 or 125 µM) increased the number of palisade cells in the leaves, but reduced the cell size (Figure 5g,h,k,l), mimicking the cells in the leaves of the ccr1-4 mutant. A higher FeA concentration (250 µM) further decreased cell size (Figure 5i,l), but, instead of the increase in cell number caused by treatment with lower concentrations of FeA, the number of cells was decreased (Figure 5k). It is possible that treatment with a high concentration of FeA has some side-effects on cell proliferation. In wild-type leaves treated with both 1 mM H$_2$O$_2$ and 50 µM FeA, the cell number and cell size appeared normal (Figure 5j,l).

Root cells of young seedlings treated with FeA showed a decrease in endogenous H$_2$O$_2$ levels. Whereas wild-type roots of 7-day-old seedlings accumulated H$_2$O$_2$, the CM-H$_2$DCFDA fluorescence was barely detected in ccr1-4 roots (Figure S5). Treatment of wild-type seedlings with 50 µM FeA markedly reduced the H$_2$O$_2$ level in the root (Figure S5). As for palisade cells, the number of cortex cells in the root meristematic zone was also increased by the FeA treatment, but decreased by the H$_2$O$_2$ treatment (Figure S5).

Reduced FeA levels in plants result in an increase in ROS levels and defective cell proliferation

To obtain further evidence that FeA promotes cell proliferation in planta, it is important to identify and characterize plants that contain reduced FeA levels. However, to our knowledge, Arabidopsis mutants with reduced FeA levels have not been reported. In lignin biosynthesis, the last
CCR1 mediates cell proliferation exit in leaves
Figure 5. Treatment of seedlings with H2O2 or FeA resulted in changes in the cell number and cell size of leaves.

(a–d) Differential interference contrast microscopy to analyze palisade cells of the first leaves on day 12 from wild-type plants that were mock-treated (a) or on day 5 treated with H2O2 at the concentrations of 0.5 mM (b), 1.0 mM (c) or 5.0 mM (d).

(e, f) Quantitative analysis of the palisade cell number (e) and size (f) in the first leaves of H2O2-treated wild-type plants on day 12.

(g–j) Palisade cells of the first rosette leaves from wild-type seedlings on day 12, on day 5 treated with FeA at 50 μM (g), 125 μM (h) or 250 μM (i), or treated with 50 μM FeA and 1 mM H2O2 (j).

(k, l) Quantitative analysis of the palisade cell number (k) and size (l) from the first leaves of wild-type plants on day 12, treated with FeA or FeA plus H2O2.

Scale bar, 50 μm in (a). Images in (a–d) and (g–j) are at the same magnification, and photographs were taken at the positions shown in Figure 4(i). Values in (e, f, k, l) are means ± SD (n = 10). The values for samples from mock-treated seedlings were arbitrarily fixed as 1.0. Asterisks indicate statistically significant differences compared with time 0 (**P < 0.01).
three steps in G-type monolignol formation are catalyzed by caffeoyl CoA 3-O-methyltransferase (CCoAOMT), CCR1 and CAD-C/CAD-D (Figure 6a) (Boerjan et al., 2003; Vanholme et al., 2010, 2012). In Arabidopsis, CCoAOMT has been shown to be functionally redundant with caffeic acid O-methyltransferase (COMT) (Do et al., 2007). Because CCR1 uses feruloyl CoA as the substrate and the ccr1 mutation results in plants with high levels of FeA, we reasoned that the comt ccoaomt double mutant, which is mutated in enzymes that produce feruloyl CoA (Figure 6a), may contain low levels of FeA. We thus first performed an LC-MS analysis to determine FeA levels in comt ccoaomt, and found that, on day 7, comt ccoaomt leaves contained a much lower FeA level than in wild-type plants (Figure 6b). We also measured the FeA levels of ccr1-4 and cad-c cad-d mutants using leaves on day 7. While the FeA level in cad-c cad-d was similar to that in the wild-type, it was dramatically increased in the ccr1-4 leaves (Figure 6c), consistent with the previous report using stems of the ccr1-g mutant (Derikvand et al., 2008). These results indicate that either a lack of FeA or a drastic increase in FeA affects plant growth and development.

To determine whether the comt ccoaomt phenotypes are caused by the lack of FeA, we treated comt ccoaomt seedlings with FeA in growth medium. Compared with the wild-type (Figure 7a), the mock-treated comt ccoaomt double mutant showed a very small plant size (Figure 7b), with an increased level of H2O2 (Figure 7c). The comt ccoaomt phenotypes were mostly, but not fully, rescued by treatment with FeA (Figure 7d–f), indicating that the phenotypes are at least partly caused by the lack of FeA.

To test whether the antioxidant function of FeA rescued comt ccoaomt phenotypes, we treated the comt ccoaomt double mutant with N-acetyl-l-cysteine (NAC), another antioxidant that may be absorbed by plants (Joo et al., 2001). Application of NAC partially rescued the comt ccoaomt phenotypes in a dose-dependent manner (Figure 7g–i), although NAC treatments were not as effective as FeA treatments in rescuing the mutant phenotypes (Figure 7j–l). For instance, treatment of comt ccoaomt with 1 mM NAC resulted in increases in leaf size (Figure 7j), leaf number (Figure 7k) and the number of cells per leaf (Figure 7l), but these increases were not as large as those in response to FeA treatments. Because treatments with NAC or FeA decreased the H2O2 concentrations in the comt ccoaomt double mutant (Figure 7c), it is possible that oxidative stress contributed to the comt ccoaomt phenotypes.

DISCUSSION

In multicellular organisms, cell proliferation and differentiation are well balanced for normal development, and initiation of cell differentiation is often accompanied by exit

Figure 6. Changes of soluble FeA contents in comt ccoaomt, ccr1-4 and cad-c cad-d mutants.
(a) The biosynthetic steps from caffeoyl CoA to G-type monolignol. The dashed arrow indicates the proposed step for FeA formation. (b, c) LC-MS was performed to detect changes in soluble FeA contents in the comt ccoaomt double mutant (b), and the ccr1-4 single mutant and cad-c cad-d double mutants (c). Leaves on day 7 were used in the analyses. FeA levels from wild-type Col-0 leaves were arbitrarily fixed at 1.0. Values are means ± SE of three biological replicates. Asterisks indicate statistically significant differences compared with Col-0 (**P < 0.01).

© 2015 The Authors
Figure 7. The antioxidant function of FeA contributes to the promotion of cell proliferation during plant growth and development.

(a) A 12-day-old wild-type seedling. (b) A 12-day-old comt ccoaomt seedling, showing a dramatically reduced plant size. Scale bar in (a) = 1 mm. Images in (a) and (b) are at the same magnification.

(c) comt ccoaomt double mutant plants contained increased levels of ROS, and treatment with FeA or NAC in growth medium resulted in suppression of ROS levels. Whole seedlings at 12 days old were used in the analyses. Values are means ± SE of three biological replicates. Asterisks indicate statistically significant differences compared with Col-0 (**P < 0.01).

(d–f) Phenotypes of the comt ccoaomt double mutant were partially rescued by treatment with FeA. Shown are 12-day-old comt ccoaomt plants grown on medium containing 25 μM (d), 50 μM (e) or 125 μM (f) FeA.

(g–i) NAC partially rescued the comt ccoaomt phenotypes. Shown are 12-day-old comt ccoaomt plants, treated in medium containing 0.1 mM (g), 0.5 mM (h) or 1 mM (i) NAC. Scale bar in (d) = 1 mm. Images in (d–i) are at the same magnification.

(j–l) Quantitative analyses of leaf size (j), leaf numbers per seedling (k), and cell numbers per leaf (l) for comt ccoaomt double mutant plants treated with FeA or NAC. Values are means ± SD (n = 10). Asterisks indicate statistically significant differences compared with Col-0 (⁎⁎P < 0.05; **⁎⁎P < 0.01). dm, comt ccoaomt double mutant.
from the mitotic cell cycle (Breuer et al., 2010). Thus, control of the cellular transition from the proliferation stage to the differentiation stage is important for plant development. In this study, we showed that activity of CCR1 results in decreased FeA levels. As FeA antagonizes the effect of ROS, and a high level of ROS is associated with exit from the cell cycle in leaves, we propose that ROS may be the previously proposed chloroplast-derived signal (Andriankaja et al., 2012). Thus, CCR1, FeA and ROS may coordinate to direct cell proliferation exit for leaf development. After leaf initiation, the intracellular concentration of soluble FeA peaks because of the limited activity of CCR1, such that leaf cells may retain their rapid proliferation state. During further leaf growth, chloroplasts develop and the activity of the photosynthetic electron transport chain leads to increased ROS levels. Meanwhile, CCR1 expression increases, and the increased CCR1 activity gradually depletes FeA. The increased activity of ROS terminates the cell cycle and forces leaf cells to enter the differentiation stage. Therefore, CCR1 is an important factor in the process of cell proliferation exit during leaf development.

The role of ROS in leaf development is consistent with that in root development. In roots, ROS is critical for the balance of cell proliferation and differentiation. UPBEAT1 (UPB1), a transcription factor, directly regulates the expression of a set of peroxidases that modulate actions of ROS in the cell proliferation zone and the cell elongation zone where differentiation begins (Tsukagoshi et al., 2010). Our data show that CCR1 is highly expressed in most cells in the roots, including cells in the zones of cell proliferation. As in leaves, strong expression of CCR1 depletes the soluble FeA in the root. In contrast to the antioxidant action of FeA in balancing cell proliferation and differentiation in leaves, root-produced FeA may quickly enter the lignin biosynthesis pathway, and thus modulation of ROS in roots probably relies on some other mechanisms.

Our results showed that treatment of seedlings with 50 μM FeA may block the effect of H₂O₂ at much higher concentrations. It is possible that the action of FeA against the H₂O₂ effect does not occur through a simple ROS depletion process, and FeA may also have a function in strengthening the antioxidant ability of plant cells during ROS stress. This idea is supported by results from an experiment using animal cells: treatment with FeA increased levels of reduced glutathione and a set of antioxidant enzymes in rat hepatocytes (Srinivasan et al., 2006).

Our results show that the cell proliferation stage was dramatically prolonged in ccr1-4 leaves. The high level of FeA in the ccr1 mutant may be the reason for the prolonged cell proliferation stage. This possibility is supported by the fact that treatment of Arabidopsis seedlings with FeA increased cell proliferation. The expression of CCR1 was developmentally regulated; it was barely detected in very young leaves, but showed increased expression during leaf development in regions of the leaf where cell proliferation is about to cease. Coincidently, lignin biosynthesis, which requires CCR1 activity, does not usually occur in highly dividing cells, and thus CCR1 action has two functions for leaf growth and development: termination of cell division and lignin biosynthesis. The regulation of CCR1 activity has been investigated in rice (Oryza sativa), and CCR1 was found to be an effector of the Rac small GTPase (Kawasaki, 2006). In future studies, it will be interesting to study the regulation of CCR1 in more detail. Information on the regulation of CCR1 expression may greatly increase our understanding of leaf development.

In this study, we have provided evidence that FeA plays important roles in plant growth and development. Recent studies have revealed genetic pathways for lignin biosynthesis. At least ten loci corresponding to key enzymes involved lignin biosynthesis have been identified in Arabidopsis, largely based on characterization of loss-of-function mutants (Vanholme et al., 2012). Although such mutants generally show decreased lignin content, they may grow normally or show dramatic differences in plant growth and development. Here, we analyzed three lignin-reduced mutants with loss-of-function mutations in enzymes catalyzing three consecutive steps of the same pathway. Compared with cad-c cad-d, which showed normal growth except for a soft inflorescence stem due to the low lignin content, ccr1 and comt ccoaomt showed very different plant phenotypes. Interestingly, the soluble FeA levels of these three mutants are correlated with their phenotypic severity: cad-c cad-d has a similar level of FeA to that in the wild-type, but comt ccoaomt and ccr1 contain either dramatically reduced or increased FeA levels. Based on these results, we propose that normal or dramatically altered levels of certain intermediates in lignin biosynthesis are one reason why lignin-deficient mutants have either normal or severely altered phenotypes.

Plants produce various kinds of antioxidants, and it is possible that each plant-produced antioxidant has a specific role in protecting the cells against ROS. FeA is perhaps the most abundant antioxidant in plant cells. The presence of such an abundant antioxidant in plants may have some significance. Unlike the cells of other living organisms, plant cells contain chloroplasts, which possess a photosynthetic electron transport chain that generates extremely large amounts of ROS. These ROS may damage various biological processes and structures if they are not removed appropriately. Therefore, the large amount of FeA may represent a reservoir of antioxidant to quench ROS. On the other hand, whereas many of the antioxidant compounds in plants must be recycled to restore their antioxidant function (Foyer and Noctor, 2011), FeA is not. After FeA depletes the ROS generated by physiological processes, it can serve as an essential material in the plant cell wall (Jacquet et al., 1995; Saulnier and Thibault, 1999).
EXPERIMENTAL PROCEDURES

Plant materials and growth conditions

The Arabidopsis mutants comt (Goujon et al., 2003), ccaoamt (Do et al., 2007), ccr1-g (Derikvand et al., 2008) and cad-c cad-d (Sibout, 2005) are in the Col-0 background, while ae7 is in the Ler background. The double mutant comt ccaoamt was constructed by crossing comt with ccaoamt, and the double mutant was obtained from segregating F2 progeny, with phenotypes similar to those previously described (Do et al., 2007). For generation of the ae7 suppressor, approximately 5000 ae7 seeds were mutagenized using ethyl methanesulfonate and screened. Growth of Arabidopsis was performed as described previously (Chen et al., 2000). For Arabidopsis seedlings grown on plates, surface-sterilized seeds were germinated in half-strength Murashige and Skoog (MS) medium supplemented with 1% sucrose for 5 days, and seedlings were moved to medium containing various chemicals for various times as described in Results.

Histology and microscopy

The CCR1pro:CCR1-GUS fusion was constructed by PCR amplification of the CCR1 gene including 1 kb of promoter and 3 kb of transcribing regions, using primers 5'-GCAGCCGAAGGACCAACGCG-3' and 5'-CGGATCTGCAATCGATTACCTTGTGCCTCGT-3'. After sequence verification, the CCR1pro:CCR1 fragment was inserted into the binary vector p1300 (http://www.cambia.org/daisy/cambia/). After transformation, GUS staining of leaves was performed as described previously by Yao and Greenberg (2006), with the concentration of GUS staining solution at 10 μg/ml. Quantitative analysis of GUS was performed as described previously (Babu et al., 2003). DCF fluorescence was measured using supernatants from leaf homogenates. The value of the fluorescence intensity of samples prepared from wild-type Col-0 leaves was arbitrarily fixed as 100 units.

LC-MS analyses

LC-MS was performed as described previously (Derikvand et al., 2008) with modifications. Briefly, leaves of various developmental stages were extracted using 0.2 ml of 80% methanol. The extracts were filtered through a 0.22 μm mesh before LC-MS analysis.

ACKNOWLEDGEMENTS

We thank L. Jouanin (INRA Centre de Versailles-Grignon), the European Arabidopsis Stock Center (http://arabidopsis.info/), and the Arabidopsis Biological Resource Center (https://abrc.osu.edu/) for mutant seeds. P. Doerner (School of Biological Sciences, University of Edinburgh) for the CYCB1;1pro:Dbox-GUS/Col-0 seeds, and L. Xu (Shanghai Institute of Plant Physiology and Ecology) and J. Balk (Department of Biological Chemistry, John Innes Centre) for useful discussions. This work was supported by a grant from the National Basic Research Program of China (973 Program, 2012CB910503).

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article.

Figure S1. Identification of an ae7 suppressor mutant.
Figure S2. Molecular identification of the CCR1 gene.
Figure S3. Cell size and cell number per leaf for the ccr1-g mutant.
Figure S4. Expression patterns of CCR1 in the root.
Figure S5. Effects of FeA and H2O2 on cell numbers in the cortex of the root meristematic zone.

REFERENCES

© 2015 The Authors